Skip to contents

Useful when making complex compound statements that require dynamic substitution via tidy eval for dynamically created variables derived from the context.

Usage

expr_pipe(exprs)

Arguments

exprs

expressions See exprs

Value

expression

Examples

(.data <- tibble::tibble(val = runif(10)))
#> # A tibble: 10 × 1
#>        val
#>      <dbl>
#>  1 0.0808 
#>  2 0.834  
#>  3 0.601  
#>  4 0.157  
#>  5 0.00740
#>  6 0.466  
#>  7 0.498  
#>  8 0.290  
#>  9 0.733  
#> 10 0.773  
(exp <- expr_pipe(
  rlang::exprs(
    .data,
    dplyr::mutate(val = val + 5, category = sample(1:3, length(val), replace = TRUE)),
    dplyr::group_by(category),
    dplyr::summarise(s = sum(val))
  )
))
#> dplyr::summarise(dplyr::group_by(dplyr::mutate(.data, val = val + 
#>     5, category = sample(1:3, length(val), replace = TRUE)), 
#>     category), s = sum(val))
rlang::eval_bare(exp)
#> # A tibble: 3 × 2
#>   category     s
#>      <int> <dbl>
#> 1        1  22.1
#> 2        2  16.1
#> 3        3  16.2